Открытие закона и его значение

Знаменитый английский химик Роберт Бойль при выполнении различных опытов с металлами заметил, что при сильном нагревании металлов на воздухе их масса увеличивается. В итоге ученый предположил, что в результате химической реакции, протекающей при нагревании, масса веществ должна меняться. Роберт Бойль считал, что при нагревании металлы реагируют с некоей «огненной материей», содержащейся в пламени. «Огненную материю» называли флогистоном.

Русский ученый Михаил Васильевич Ломоносов, изменил постановку эксперимента, и нагревал металлы не на открытом воздухе, а в герметично запаянных стеклянных ретортах. При постановке эксперимента таким способом, масса реторты с металлом до и после нагревания оставалась прежней.

При вскрытии такой реторты оказалось, что металл частично превратился в другое вещество, которое покрывало поверхность металла. Следовательно, металл прореагировал с воздухом, который находился в реторте. М.В. Ломоносов сделал очень важный вывод. Если общая масса реторты до и после прокаливания не изменялась, значит, масса содержащегося в сосуде воздуха уменьшилась на столько же, на сколько увеличилась масса металла (за счет образования нового вещества на его поверхности).

Масса воздуха в реторте действительно уменьшалась, так как при ее вскрытии воздух «врывался» в реторту со свистом.

Таким образом, был сформулирован закон сохранения массы:

Масса веществ, вступивших в химическую реакцию равна массе веществ, полученных в результате реакции

Открытие закона сохранения массы нанесло серьезный удар ошибочной теории флогистона, что способствовало дальнейшему бурному развитию химии. Из закона сохранения массы следует, что вещества не могут возникать из ничего, и превращаться в ничто. Вещества только превращаются друг в друга.

Например, при горении свечи ее масса уменьшается. Можно предположить, что вещество, из которого изготовлена свеча, исчезает бесследно. На самом деле это не так. В данном случае не учтены все вещества, которые участвуют в химической реакции горения свечи.

Свеча горит из-за того, что в воздухе присутствует кислород. Следовательно, вещество, из которого изготовлена свеча – парафин, реагирует с кислородом. При этом образуется углекислый газ и пары воды – это продукты реакции. Если измерить массы продуктов реакции, углекислого газа и паров воды, то их масса будет равна массе парафина и кислорода, которые прореагировали. В данном случае продукты реакции просто нельзя увидеть.

В лаборатории доказать закон сохранения массы можно следующим образом. Необходимо поместить в колбу какое-либо вещество, способное реагировать с кислородом. Колбу герметично закрыть пробкой и взвесить. Далее следует нагреть колбу. При нагревании вещество прореагирует с кислородом, содержащимся в воздухе. Когда колба остынет, снова ее взвесить. Масса колбы останется прежней.

Закон сохранения массы открыт М.В. Ломоносовым в 1748 году. В 1773 году, такие же результаты опытов, независимо от Ломоносова, получил французский химик Антуан Лоран Лавуазье.

Расчеты при помощи закона сохранения массы

Пользуясь законом сохранения массы, можно вычислить массу или одного из вступивших в реакцию веществ, или одного из полученных веществ, если известны массы всех остальных веществ.

При сгорании железа в кислороде, образуется так называемая железная окалина. Какова масса железной окалины, если в реакцию вступило 5,6 г железа и 3,2 г кислорода?

Из закона сохранения массы следует, что суммарная масса железа и кислорода (реагентов) равна массе железной окалины (продукта). Следовательно, масса железной окалины равна 5,6 г + 3,2 г = 8,8 г.

Рассмотрим другой пример. При пропускании электрического тока через воду, вода разлагается на простые вещества – водород и кислород. Какова масса кислорода, если из 12 г воды получено 1,3 г водорода?

Для наглядности составим схему протекающего процесса, массу кислорода обозначим как X грамм:

Легко посчитать, что масса кислорода равна 12 г – 1,3 г = 10,7 г.

  • Закон сохранения массы вещества открыт русским ученым М.В. Ломоносовым
  • Формулировка закона сохранения массы: масса веществ, вступивших в химическую реакцию, всегда равна массе веществ полученных в результате реакции