Искусственный интеллект наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ.

Исследованиями в области искусственного интеллекта занимаются специалисты из разных стран. Осознавая огромные перспективы высокоинтеллектуальных систем, российские разработчики также уделяют этому направлению особое внимание. В данном обзоре собрана информация о российских компаниях, занимающихся исследованиями в области искусственного интеллекта.

Компания Яндекс уже на протяжении нескольких лет применяет технологии искусственного интеллекта в своих поисковых механизмах. В настоящий момент работа ведется над созданием нейронной сети, способной вывести принцип работы поисковика на новый революционный уровень. Традиционный алгоритм поиска основан на сопоставлении содержания запроса с контентом анализируемых страниц. Безусловно, все это делается с некоторыми дополнениями и расширениями – запросы переформулируются, добавляются синонимы, переводятся на другой язык и т.д.

В новом подходе каждому запросу ставится в соответствие некое векторное число, наиболее точно отражающее его смысл. Далее поиск осуществляется по этому числу. При этом запрос и ответ могут не иметь ни одного общего слова. Все, что их будет объединять – это одинаковый смысл содержимого.

Стоит отметить, что в перспективе в векторное число смогут переводится изображения и видео, что, по словам представителей Яндекс, позволит значительно расширить границы «умного» поиска.

Совсем недавно компания Яндекс выпустила обновленную версию своего браузера, в котором технологии искусственного интеллекта позволяют персонализировать поиск в соответствии с интересами пользователя. Новый сервис получил название Дзэн.

Дзэн не только учитывает то, чем традиционно интересуются пользователи, но и анализирует их текущие предпочтения. Например, если человека заинтересуется анатомией, то материалов, связанных с этой темой, в его новостной ленте станет значительно больше. При этом, Дзен не ограничивается лишь любимыми сайтами и предпочтениями пользователя. Пользователю могут предлагаться материалы из совершенно незнакомых источников, если Дзен посчитает, что они могут его заинтересовать.

Достаточно интересным является применение технологий искусственного интеллекта в сервисе Яндекс. Аудитории. Данный сервис позволяет компаниям найти в Интернете целевых клиентов с целью более эффективного таргетирования рекламных объявлений. Достаточно загрузить в сервис список клиентов с телефонами и/или e-mail адресами, и система, сканируя социальные сети с помощью искусственного интеллекта, находит этих людей в сети Интернет. Далее можно разбить клиентов по целевым группам и персонализировать для них через Яндекс.Директ рекламные объявления. Например, можно ненавязчиво предлагать целевой аудитории новый товар, или в конце концов склонить пользователей к покупке товара, которым они уже интересовались ранее.

Компания ABBYY является признанные мировым лидеров в области интеллектуальной обработки данных и лингвистики. Компания разработала решения, позволяющие с помощью технологий искусственного интеллекта распознавать текстовые данные, работать с печатными документами и файлами в формате PDF, самостоятельно осуществлять ввод данных в информационные системы компаний, производить корпоративный семантический поиск, а также находить переводы незнакомых слов и фраз.

«Занимаясь такой темой, как искусственный интеллект, нужно не просто сделать умную машину. А нужно создать чтото полезное. Мы своими технологиями стараемся всегда помогать людям, облегчать им жизнь, повышать эффективность процессов – это цель, ради которой мы трудимся», ‒ Дмитрий Шушкин, заместитель генерального директора ABBYY в интервью CNews, март 2015.

Одним из главных достижений ABBYY является система Compreno, позволяющая анализировать и понимать текст на естественном языке. Над созданием данной системы специалисты компании работали около 10 лет. Стоимость проекта составила более $80 млн. Принцип работы Compreno представлены на следующем рисунке.

1 Этап. Лексикоморфологический анализ. На первом этапе анализируемый текст делится на абзацы, предложения и слова. Для каждого слова определяется часть речи и морфологические характеристики (род, число, падеж и т.д.

2 Этап. Синтаксический анализ. В тексте выделяются предложения. Для каждого предложения определяется структура и принцип организации связи слов.

3 Этап. Семантический анализ. Определяется значение каждого слова и строится семантическая структура предложения, исходя из установленных на прошлом этапе связей.

4 Этап. Прагматический уровень анализа. На этом этапе накладывается прагматический слой анализа текста, применяются онтологии (терминология для конкретной предметной области анализа) и правила извлечения нужных объектов.

В результате, на выходе системы получается универсальный и структурированный набор данных, что позволяет ABBYY Compreno решать задачи по анализу и извлечению важной информации, «умному» поиску и классификации данных. Технологии компании ABBYY используются по всему миру. Все решения лицензируются крупнейшими международными ИТ-компаниями, такими как EPSON, Fujitsu, Samsung, Panasonic, Sharp, Acer, KnowledgeLake, Microsoft и другие. Заказчиками ABBYY являются российские и международные компании из банковской, энергетической, нефтегазовой, телекоммуникационной и других отраслей, а также из государственного сектора.

Компания VisionLabs была основана в 2012 году и является резидентом IT-кластера «Сколково». Компания специализируется на решениях, позволяющих распознавать лица клиентов в самых быстрорастущих сегментах рынка: банковский сектор и ритейл. Массачусетский университет включил VisionLabs в тройку лучших мировых систем в области распознавания лиц для коммерческих целей.

Высокоточные алгоритмы распознавания образов были получены в результате использования нейронных сверхточных сетей, обученных с помощью методов глубокого обучения и многомиллионных массивов данных, что, по словам представителей компании, является существенным преимуществом выпускаемого продукта. Малый размер ключа извлекаемого из фотоизображения позволяет проводить сравнения 500 миллионов ключей менее чем за 1 секунду.

Платформа распознавания лиц VisionLabs LUNA – флагманский продукт компании. LUNA позволяет в режиме реального времени анализировать колоссальные объемы фото и видеоданных с целью определения в них лиц людей и сравнения их с многомиллионными базами данных. На базе данной технологии также создан облачный сервис FACE_IS, который может связывать клиентов с предшествующей историей их покупок и помогать выстраивать взаимодействие брендом. Решения компании являются plug’&’play, по умолчанию имеют интеграцию с большинством баз данных, CRM и BI-систем, и не требуют от пользователей замены оборудования, так как интегрируются в их существующую IT-инфраструктуру.

В 2014 году компания VisionLabs заключила эксклюзивный контракт с Бюро кредитных историй «Эквифакс» в России по запуску системы распознавания лиц на межбанковском уровне. Система используется в рамках сервиса противодействия кредитному мошенничеству. К данному сервису на базе решения VisionLabs подключено уже более 20 крупнейших банков в России. Крупнейшим реализованным проектом в РФ является проект c «Почта Банк», в СНГ – с Kaspi Bank.

История развития искусственного интеллекта в СССР и России

Коллежский советник Семён Николаевич Корсаков (1787‒1853) ставил за дачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного. В 1832 году С.Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых «интеллектуальных машин», для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации. В конструкции своих машин Корсаков впервые в истории информатики применил перфорированные карты, игравшие у него своего рода роль баз знаний, а сами машины по существу являлись предтечами экспертных систем.

В СССР работы в области искусственного интеллекта начались в 1960-х годах. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д.А. Поспеловым. С начала 1960-х М.Л. Цетлин с коллегами разрабатывали вопросы, связанные с обучением конечных автоматов.

В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

В 1966 году В.Ф. Турчиным был разработан язык рекурсивных функций Рефал.

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики. По мнению Д.А. Поспелова, науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики. При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х ‒ начала 1960-х годов.

Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются.